
13 570684 Ch09.qxd 3/31/04 2:51 PM Page 114

114 Part II: Run and Scream from Variables and Math

The range for floating-point numbers is quite large. With most C compilers,
you can store any number in the range ±3.4 × 10–38 to ±3.4 × 1038. In English,
that’s a value between negative 340 undecillion and positive 340 undecillion.
An undecillion is a 1 with 36 zeroes after it. That’s a true, Mr. Spock-size
value, though most numbers you use as floats are far less.

� Rules for naming variables are in Chapter 8.

� Noninteger values are stored in float variables.

� Even though 123 is an integer value, you can still store it in a float vari­
able. However. . . .

� float variables should be used only when you need them. They require
more internal storage and more PC processing time and power than inte­
gers do. If you can get by with an integer, use that type of variable instead.

“Hey, Carl, let’s write a floating-point
number program!”
Suppose that you and I are these huge, bulbous-headed creatures, all slimy and
green and from the planet Redmond. We fly our UFO all over the galaxy, drink
blue beer, and program in C on our computers. I’m Dan. Your name is Carl.

One day, while assaulting cows in Indiana, we get into this debate:

Dan: A light-year is 5,878,000,000,000 miles long! That’s 5 trillion, 878 bil­
lion, plus change! I’m not walking that!

Carl: Nay, but it’s only a scant 483,400,000 miles from the sun to Jupiter.
That is but a fraction of a light-year.

Dan: How much of a fraction?

Carl: Well, why don’t you type the following C program and have your
computer calculate the distance for you?

Dan: Wait. I’m the author of this book. You type the program, JUPITER.C,
and you figure it out. Sheesh.

#include <stdio.h>

int main()
{

float lightyear=5.878E12;
float jupiter=483400000;
float distance;

